2025-04-17 05:19:55
本申请提供古文物修复处理方法、装置、计算机设备及存储介质,将待修复古文物与已构建的古文物样本数据库进行匹配,得到待修复古文物中的待修复区域,以及待修复区域的物质信息和待修复区域的光谱信息,通过待修复区域的物质信息以及待修复区域的光谱信息,得到待修复区域的数字图像信息,将数字图像信息转换为待修复区域的待修复真实物质信息,获取待修复古文物的太赫兹指纹谱数据,根据待修复真实物质信息和太赫兹指纹谱数据得到待修复的目标物质信息,计算机设备能够采用太赫兹光谱技术对不同类型的待修复古文物的内部结构进行物质分析
(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 CN 111861970 A (43)申请公布日 2020.10.30 (21)申请号 7.6 (22)申请日 2019.04.23 (71)申请人 天和防务技术(北京)有限公司 地址 100041 北京市石景山区实兴大街30 号院16#F6 (72)发明人 张凯歌龚亚樵赵广州冯菲 姜思萌刘彬秦文强 (74)专利代理机构 北京华进京联知识产权代理 有限公司 11606 代理人 孙岩朱五云 (51)Int.Cl. G06T 7/00(2017.01) G06K 9/62(2006.01) 权利要求书2页 说明书12页 附图4页 (54)发明名称 古文物修复处理方法、装置、计算机设备及 存储介质 (57)摘要 本申请提供古文物修复处理方法、装置、计 算机设备及存储介质,将待修复古文物与已构建 的古文物样本数据库进行匹配,得到待修复古文 物中的待修复区域,以及待修复区域的物质信息 和待修复区域的光谱信息,通过待修复区域的物 质信息以及待修复区域的光谱信息,得到待修复 区域的数字图像信息,将数字图像信息转换为待 修复区域的待修复真实物质信息,获取待修复古 文物的太赫兹指纹谱数据,根据待修复真实物质 信息和太赫兹指纹谱数据得到待修复的目标物 质信息,计算机设备能够采用太赫兹光谱技术对 A 不同类型的待修复古文物的内部结构进行物质 0 分析和鉴别,从而使操作员能够根据检测结果对 7 9 1 不同类型的待修复古文物进行准确修复,提高了 6 8 1 古文物修复的准确率。 1 1 N C CN 111861970 A 权利要求书 1/2页 1.一种古文物修复处理方法,其特征在于,所述方法包括: 将待修复古文物与已构建的古文物样本数据库进行匹配,得到所述待修复古文物中的 待修复区域,以及所述待修复区域的物质信息和所述待修复区域的光谱信息; 通过所述待修复区域的物质信息以及所述待修复区域的光谱信息,得到所述待修复区 域的数字图像信息; 将所述待修复区域的数字图像信息转换为所述待修复区域的待修复真实物质信息; 获取所述待修复古文物的太赫兹指纹谱数据; 根据所述待修复真实物质信息和所述太赫兹指纹谱数据,得到待修复的目标物质信 息。 2.根据权利要求1所述的方法,其特征在于,所述古文物样本数据库包括所述古文物样 本的指纹谱特征库以及所述古文物样本的光谱数据库; 所述将待修复古文物与已构建的古文物样本数据库进行匹配,得到所述待修复古文物 中的待修复区域,以及所述待修复区域的物质信息和所述待修复区域的光谱信息,包括: 将所述待修复古文物与已构建的所述古文物样本数据库进行匹配,得到待修复古文物 中的所述待修复区域; 将所述待修复古文物与所述古文物样本指纹谱特征库进行匹配,得到所述待修复区域 的物质信息; 获取所述待修复古文物的PG电子官网光谱信息; 将所述待修复古文物的光谱信息与所述古文物样本光谱数据库进行匹配,得到所述待 修复区域的光谱信息。 3.根据权利要求1所述的方法,其特征在于,所述通过所述待修复区域的物质信息以及 所述待修复区域的光谱信息,得到所述待修复区域的数字图像信息,包括: 通过数据图像修复系统,对所述待修复区域的物质信息以及所述待修复区域的光谱信 息进行融合处理,得到所述待修复区域的数字图像信息。 4.根据权利要求1所述的方法,其特征在于,所述获取所述待修复古文物的太赫兹指纹 谱数据,包括: 获取所述待修复古文物的光学系数; 根据所述光学系数获取所述待修复古文物的太赫兹指纹谱数据。 5.根据权利要求4所述的方法,其特征在于,所述光学系数包括折射率、消光系数以及 吸收系数中的至少一种。 6.根据权利要求1所述的方法,其特征在于,在根据所述待修复真实物质信息和所述太 赫兹指纹谱数据,得到待修复的目标物质信息之前,所述方法还包括:根据所述古文物样本 数据库训练分类器模型; 所述根据所述待修复真实物质信息和所述太赫兹指纹谱数据,得到待修复的目标物质 信息,包括: 通过所述分类器模型对所述太赫兹指纹谱数据进行分类处理,得到分类物质信息; 将所述分类物质信息与所述待修复真实物质信息进行匹配,得到待修复的所述目标物 质信息。 7.根据权利要求6所述的方法,其特征在于,所述根据所述古文物样本数据库训练分类 2 2 CN 111861970 A 权利要求书 2/2页 器模型,包括:利用已构建的所述古文物样本数据库采用深度学习算法训练分类器模型。 8.一种古文物修复处理装置,其特征在于,所述装置包括: 匹配模块,用于将待修复古文物与已构建的古文物样本数据库进行匹配,得到所述待 修复古文物中的待修复区域,以及所述待修复区域的物质信息和所述待修复区域的光谱信 息; 获取数字图像信息模块,用于通过所述待修复区域的物质信息以及所述待修复区域的 光谱信息,得到所述待修复区域的数字图像信息; 转换模块,用于将所述待修复区域的数字图像信息转换为所述待修复区域的待修复真 实物质信息; 获取指纹谱数据模块,用于获取所述待修复古文物的太赫兹指纹谱数据; 获取目标物质信息模块,用于根据所述待修复真实物质信息和所述太赫兹指纹谱数 据,得到待修复的目标物质信息。 9.一种计算机设备,包括存储器、处理器,所述存储器上存储有可在处理器上运行的计 算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至7中任一项所 述方法的步骤。 10.一种存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执 行时实现权利要求1至7中任一项所述方法的步骤。 3 3 CN 111861970 A 说明书 1/12页 古文物修复处理方法、装置、计算机设备及存储介质 技术领域 [0001] 本申请涉及古文物修复技术领域,特别是涉及一种古文物修复处理方法、装置、计 算机设备及存储介质。 背景技术 [0002] 在中国历史文化发展的过程中,留下了很多古文物艺术品。由于时间和环境的关 系,很多古文物艺术品都遭到了损坏,降低了古文物的艺术表现力,因此,古文物修复技术 对历史文化的研究及传播具有非常重要的意义和作用。 [0003] 传统的古文物无损检测,通常需要采用X射线、超声波、红外、拉曼光谱等技术,基 于图像处理的方法对古文物进行修复。但是,传统技术是以人的视觉观感为修复标准,所修 复的颜色穿凿痕迹较重,很难与原始古文物风格浑然一体,从而降低了古文物修复的准确 率。 发明内容 [0004] 基于此,有必要针对上述技术问题,提供一种能够提高古文物修复准确率的古文 物修复处理方法、装置、计算机设备及存储介质。 [0005] 本申请实施例提供一种古文物修复处理方法,所述方法包括: [0006] 将待修复古文物与已构建的古文物样本数据库进行匹配,得到所述待修复古文物 中的待修复区域,以及所述待修复区域的物质信息和所述待修复区域的光谱信息; [0007] 通过所述待修复区域的物质信息以及所述待修复区域的光谱信息,得到所述待修 复区域的数字图像信息; [0008] 将所述待修复区域的数字图像信息转换为所述待修复区域的待修复线] 获取所述待修复古文物的太赫兹指纹谱数据; [0010] 根据所述待修复真实物质信息和所述太赫兹指纹谱数据,得到待修复的目标物质 信息。 [0011] 在其中一个实施例中,所述古文物样本数据库包括所述古文物样本的指纹谱特征 库以及所述古文物样本的光谱数据库; [0012] 所述将待修复古文物与已构建的古文物样本数据库进行匹配,得到所述待修复古 文物中的待修复区域,以及所述待修复区域的物质信息和所述待修复区域的光谱信息,包 括: [0013] 将所述待修复古文物与已构建的所述古文物样本数据库进行匹配,得到待修复古 文物中的所述待修复区域; [0014] 将所述待修复古文物与所述古文物样本指纹谱特征库进行匹配,得到所述待修复 区域的物质信息; [0015] 获取所述待修复古文物的光谱信息; 4 4 CN 111861970 A 说明书 2/12页 [0016] 将所述待修复古文物的光谱信息与所述古文物样本光谱数据库进行匹配,得到所 述待修复区域的光谱信息。 [0017] 在其中一个实施例中,所述通过所述待修复区域的物质信息以及所述待修复区域 的光谱信息,得到所述待修复区域的数字图像信息,包括: [0018] 通过数据图像修复系统,对所述待修复区域的物质信息以及所述待修复区域的光 谱信息进行融合处理,得到所述待修复区域的数字图像信息。 [0019] 在其中一个实施例中,所述获取所述待修复古文物的太赫兹指纹谱数据,包括: [0020] 获取所述待修复古文物的光学系数; [0021] 根据所述光学系数获取所述待修复古文物的太赫兹指纹谱数据。 [0022] 在其中一个实施例中,所述光学系数包括折射率、消光系数以及吸收系数中的至 少一种。 [0023] 在其中一个实施例中,在根据所述待修复真实物质信息和所述太赫兹指纹谱数 据,得到待修复的目标物质信息之前,所述方法还包括:根据所述古文物样本数据库训练分 类器模型; [0024] 所述根据所述待修复真实物质信息和所述太赫兹指纹谱数据,得到待修复的目标 物质信息,包括: [0025] 通过所述分类器模型对所述太赫兹指纹谱数据进行分类处理,得到分类物质信 息; [0026] 将所述分类物质信息与所述待修复真实物质信息进行匹配,得到待修复的所述目 标物质信息。 [0027] 在其中一个实施例中,所述根据所述古文物样本数据库训练分类器模型,包括:利 用已构建的所述古文物样本数据库采用深度学习算法训练分类器模型。 [0028] 本申请实施例提供一种古文物修复处理装置,所述装置包括: [0029] 匹配模块,用于将待修复古文物与已构建的古文物样本数据库进行匹配,得到所 述待修复古文物中的待修复区域,以及所述待修复区域的物质信息和所述待修复区域的光 谱信息; [0030] 获取数字图像信息模块,用于通过所述待修复区域的物质信息以及所述待修复区 域的光谱信息,得到所述待修复区域的数字图像信息; [0031] 转换模块,用于将所述待修复区域的数字图像信息转换为所述待修复区域的待修 复线] 获取指纹谱数据模块,用于获取所述待修复古文物的太赫兹指纹谱数据; [0033] 获取目标物质信息模块,用于根据所述待修复真实物质信息和所述太赫兹指纹谱 数据,得到待修复的目标物质信息。 [0034] 本申请实施例提供一种计算机设备,包括存储器、处理器,所述存储器上存储有可 在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现以下步骤: [0035] 将待修复古文物与已构建的古文物样本数据库进行匹配,得到所述待修复古文物 中的待修复区域,以及所述待修复区域的物质信息和所述待修复区域的光谱信息; [0036] 通过所述待修复区域的物质信息以及所述待修复区域的光谱信息,得到所述待修 复区域的数字图像信息; 5 5 CN 111861970 A 说明书 3/12页 [0037] 将所述待修复区域的数字图像信息转换为所述待修复区域的待修复线] 获取所述待修复古文物的太赫兹指纹谱数据; [0039] 根据所述待修复真实物质信息和所述太赫兹指纹谱数据,得到待修复的目标物质 信息。 [0040] 本申请实施例提供一种存储介质,其上存储有计算机程序,所述计算机程序被处 理器执行时实现以下步骤: [0041] 将待修复古文物与已构建的古文物样本数据库进行匹配,得到所述待修复古文物 中的待修复区域,以及所述待修复区域的物质信息和所述待修复区域的光谱信息; [0042] 通过所述待修复区域的物质信息以及所述待修复区域的光谱信息,得到所述待修 复区域的数字图像信息; [0043] 将所述待修复区域的数字图像信息转换为所述待修复区域的待修复线] 获取所述待修复古文物的太赫兹指纹谱数据; [0045] 根据所述待修复真实物质信息和所述太赫兹指纹谱数据,得到待修复的目标物质 信息。 [0046] 本实施例提供的古文物修复处理方法、装置、计算机设备及存储介质,计算机设备 能够采用太赫兹光谱技术对不同类型的待修复古文物的内部结构进行物质分析和鉴别,从 而使操作员能够根据检测结果对不同类型的待修复古文物进行准确修复,提高了古文物修 复的准确率。 附图说明 [0047] 图1为一实施例提供的古文物修复处理方法的流程示意图; [0048] 图2为另一实施例提供的古文物修复处理方法的流程示意图; [0049] 图3为另一实施例提供的古文物修复处理方法的具体流程示意图; [0050] 图4为一实施例提供的古文物修复处理装置的结构示意图; [0051] 图5为一个实施例提供的计算机设备的内部结构图。 具体实施方式 [0052] 为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例 中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是 本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员 在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。 [0053] 本实施例提供的古文物修复处理方法,可以适用于计算机设备中。该设备可以为 智能手机、平板电脑、笔记本电脑、台式电脑或个人数字助理等具有数据处理功能兼图像处 理功能的电子设备,本实施例对计算机设备的具体形式不做限定。 [0054] 需要说明的是,本申请实施例提供的古文物修复处理方法,其执行主体可以是古 文物修复处理装置,该装置可以通过软件、硬件或者软硬件结合的方式实现成为图片处理 设备的部分或者全部。下述方法实施例的执行主体以计算机设备为例来进行说明。 6 6 CN 111861970 A 说明书 4/12页 [0055] 为了使本申请的目的、技术方案及优点更加清楚明白,通过下述实施例并结合附 图,对本申请实施例中的技术方案的进一步详细说明。应当理解,此处所描述的具体实施例 仅用以解释本申请,并不用于限定发明。 [0056] 图1为一实施例提供的古文物修复处理方法的流程示意图。本实施例涉及的是如 何获取待修复的目标物质信息的过程。如图1所示,该方法包括: [0057] S101、将待修复古文物与已构建的古文物样本数据库进行匹配,得到所述待修复 古文物中的待修复区域,以及所述待修复区域的物质信息和所述待修复区域的光谱信息。 [0058] 可选的,所述古文物样本数据库包括所述古文物样本的指纹谱特征库以及所述古 文物样本的光谱数据库。 [0059] 具体的,上述古文物可以为古画、陶瓷器、玉石器、雕塑、金属制品、泥土、木制品 等。其中,已构建的古文物样本可以包括特殊场所内的无损古文物和有损古文物,当前待修 复的古文物(即有损古文物)以及未损坏前的对应古文物,其中,特殊场所可以为博物馆。 [0060] 在本实施例中,执行实物修复工作的操作员可以先收集不同类型的古文物样本 库,再采用主动式太赫兹设备采集不同类型古文物样本的指纹谱特征以及光谱数据,并且 主动式太赫兹设备可以通过无线连接将采集到的数据传输至计算机设备。其中,古文物样 本的指纹谱特征可以为古文物内部结构的特征信息,即指纹谱特征可以包括物质的光学系 数,古文物样本的光谱数据可以为通过主动式太赫兹设备采集的古文物样本的三维图像信 息。 [0061] 进一步的,计算机设备可以在已构建的古文物样本数据库中,查找待修复古文物 的相关信息,并进行匹配得到待修复古文物中的待修复区域,以及待修复区域的物质信息 和待修复区域的光谱信息。其中,待修复区域的物质信息可以包括待修复古文物中待修复 区域缺失的具体物质材料,以及该物质材料的具体年代信息等。可选的,该待修复区域的物 质信息也可以称为指纹谱特征信息。需要说明的是,待修复古文物的待修复区域可以由操 作员大致辨别出来。 [0062] S102、通过所述待修复区域的物质信息以及所述待修复区域的光谱信息,得到所 述待修复区域的数字图像信息。 [0063] 可选的,上述S102中通过所述待修复区域的物质信息以及所述待修复区域的光谱 信息,得到所述待修复区域的数字图像信息的步骤包括:通过数据图像修复系统,对所述待 修复区域的物质信息以及所述待修复区域的光谱信息进行融合处理,得到所述待修复区域 的数字图像信息。 [0064] 具体的,计算机设备通过数据图像修复系统,对待修复区域的物质信息以及待修 复区域的光谱信息进行融合处理,从而得到待修复区域的数字图像信息。其中,数据图像修 复系统可以为封装有实现数字图像修复功能的软件程序的电路板,该数据图像修复系统可 以基于深度神经网络算法实现数字图像修复功能。其中,融合处理也就是还原处理。 [0065] 需要说明的是,计算机设备通过数据图像修复系统可以多次反复,对待修复区域 的物质信息以及待修复区域的光谱信息进行融合处理,得到待修复区域的最佳数字图像信 息。其中,操作员可以根据计算机设备显示的待修复区域的数字图像信息与已构建的古文 物样本数据库中的信息进行比对,确定待修复区域的最佳数字图像信息。 [0066] S103、将所述待修复区域的数字图像信息转换为所述待修复区域的待修复线] 需要说明的是,计算机设备可以将恢复的待修复区域的数字图像信息,转换为待 修复区域缺失的真实物质PG电子官网信息。其中,待修复真实物质信息可以与上述获取的待修复区域 的物质信息相同,也可以不相同,但是,该步骤中获取的待修复真实物质信息与待修复古文 物中缺失的物质相比,获得的待修复真实物质信息会更加准确,以提高修复的准确率。 [0068] S104、获取所述待修复古文物的太赫兹指纹谱数据。 [0069] 具体的,通过主动式太赫兹设备可以对待修复古文物进行扫描,从而获取待修复 古文物的太赫兹指纹谱数据。在本实施例中,主动式太赫兹设备可以对待修复古文物中待 修复区域周围进行扫描,得到待修复区域周围的太赫兹指纹谱数据。 [0070] 可选的,如图2所示,上述S104中获取所述待修复古文物的太赫兹指纹谱数据的步 骤包括: [0071] S1041、获取所述待修复古文物的光学系数。 [0072] 可选的,所述光学系数包括折射率、消光系数以及吸收系数中的至少一种。 [0073] 具体的,通过以下方式可以得到古文物样本的光学系数: [0074] a、通过主动式太赫兹设备可以先获取古文物样本周围太赫兹电场的幅值和相位 信息,并通过该幅值和相位信息计算得到古文物样本的折射率n(ω)、吸收系数α(ω)以及 消光系数k(ω)等信息; [0075] 若主动式太赫兹设备照射古文物样本后,得到的太赫兹波电场信号可以表示为: [0076] [0077] 其中,E (ω)表示样本太赫兹波电场信号,E (ω)表示参考太赫兹波电场信 sample ref 号,T(ω)表示透射系数,P(ω,l)为载荷矩阵,E(ω)为残差向量,ω表示惯性权重,l表示待 修复样本材料的估计厚度,H(ω)表示计算模型、标准化脉冲与待修复样本材料之间的相互 作用。 [0078] 若主动式太赫兹设备没有照射古文物样本,只是透射通过空气后,得到的太赫兹 波电场信号可以表示为: [0079] E (ω)=η(ω)·T (ω)·P (ω,l)·E(ω); ref 13 air [0080] 其中,η(ω)为光激励介电系数。 [0081] 定义:透射系数T(ω)可以为E (ω)与E (ω)的比值,即 sample ref [0082] [0083] 其中,表示介质1的折射率, 表示介质2的折射率,n 表示介质空气的折射率, air 当k=1,FP(ω)=1时,空气的折射率为1,此时,透射系数可以简化为: 8 8 CN 111861970 A 说明书 6/12页 [0084] [0085] 将T(ω)转化为模和辅角的形式可以表示为: [0086] H(ω)=ρ(ω)ejφ(ω); [0087] 其中, ρ(ω)表示幅值比,d表示样本厚度。 [0088] 若kn时,则 [0089] [0090] 其中,n表示介质b的折射率。 b [0091] 从而得知,古文物样本的折射率n(ω)、消光系数k(ω)以及吸收系数α(ω)分别 为: [0092] [0093] [0094] [0095] 其中,d表示样本物质的厚度,v为频率,c为光速,ω为角频率, 为E (ω)和E s r (ω)间的相位变化,E (ω)为反射光束,E (ω)为入射光束,ρ(ω)为样本物质与参考光谱的 r s 幅值比; [0096] 可选的,不同类型的古文物样本对应的折射率、消光系数以及吸收系数均可以不 相同。 [0097] b、将步骤a中计算得到的不同类型的古文物样本的折射率、消光系数以及吸收系 数均作为对应古文物样本的特征数据,统计到对应古文物样本的指纹谱特征库中。 [0098] S1042、根据所述光学系数获取所述待修复古文物的太赫兹指纹谱数据。 [0099] 具体的,计算机设备可以统计获取的待修复古文物的折射率、消光系数以及吸收 系数,以得到待修复古文物的太赫兹指纹谱数据,也就是,待修复古文物的太赫兹指纹谱数 据包含的信息为待修复古文物的折射率、消光系数以及吸收系数。 [0100] S105、根据所述待修复真实物质信息和所述太赫兹指纹谱数据,得到待修复的目 标物质信息。 [0101] 具体的,计算机设备对获取的真实待修复真实物质信息以及待修复古文物的太赫 兹指纹谱数据进行综合分析,得到待修复的目标物质信息。其中,待修复的目标物质信息可 9 9 CN 111861970 A 说明书 7/12页 以为待修复古文物中待修复区域需要修复的物质信息。 [0102] 需要说明的是,计算机设备得到待修复的目标物质信息后,操作员可以根据该目 标物质信息对待修复古文物的待修复区域进行手动修复。 [0103] 本实施例提供的一种古文物修复处理方法,该方法能够采用太赫兹光谱技术对不 同类型的待修复古文物的内部结构进行物质分析,采用数据图像修复的方式对古文物进行 反复修复,以得到最佳的待修复物质信息,从而避免直接对古文物修复时由于失误,会对古 文物修复带来不可逆的影响;另外,计算机设备对数据图像信息进一步分析以及鉴别得到 的目标物质信息,操作员再根据检测结果对古文物进行准确修复,从而提高了古文物修复 的准确率。 [0104] 图3为另一实施例提供的一种古文物修复处理方法的流程示意图,如图3所示,上 述S101中将待修复古文物与已构建的古文物样本数据库进行匹配,得到所述待修复古文物 中的待修复区域,以及所述待修复区域的物质信息和所述待修复区域的光谱信息的步骤, 包括: [0105] S1011、将所述待修复古文物与已构建的所述古文物样本数据库进行匹配,得到待 修复古文物中的所述待修复区域。 [0106] 具体的,计算机设备可以在已构建的古文物样本数据库中,查找与待修复古文物 相同的古文物样本,再将两者进行匹配,以得到待修复古文物中的待修复区域。 [0107] S1012、将所述待修复古文物与所述古文物样本指纹谱特征库进行匹配,得到所述 待修复区域的物质信息。 [0108] 具体的,计算机设备可以在古文物样本指纹谱特征库中查找与待修复古文物相同 的古文物样本,再将待修复古文物与找到的古文物样本的指纹谱特征进行匹配,以得到待 修复区域的物质信息。其中,该待修复区域的物质信息可以理解为待修复区域的指纹谱特 征。 [0109] 例如,一幅待修复古画缺失了一部分,在古文物样本指纹谱特征库中存储有待修 复古画对应的原始古画的指纹谱特征(即完好无损的古画的指纹谱特征),计算机设备可以 在古文物样本指纹谱特征库中,查找待修复古画对应的原始古画,再将该原始古画与待修 复古画的指纹谱特征进行匹配,以得到缺失部分的指纹谱特征。 [0110] S1013、获取所述待修复古文物的光谱信息。 [0111] 具体的,采用多光谱成像系统可以采集图像表面的多通道信息,获取光谱信息的 具体方式可以包括: [0112] a、采用3色电荷耦合器件(Charge Coupled Device,CCD)数码相机和M个干涉滤光 片组成一个多光谱成像系统,假定多光谱获取系统的光电转化函数是线性的,则第j通道的 数字响应输出g可以表示为: [0113] [0114] 其中,F (λ)是CCD第K波段的光谱灵敏度函数,E (λ)是光源的相对功率分布,φ k s m (λ)是第m滤光片的光谱透射比,R(λ)是物体的光谱反射比,ξ是相机噪声。 k [0115] 同时,相机模型的总通道数表示为J=K*M。 [0116] b、计算时,通常把λ ~λ 均匀分割成N个波长间隔,每个波长中心间隔用下标n min max 10 10 CN 111861970 A 说明书 8/12页 (n=1,2,…,N)表示,如果忽略噪声,则 [0117] [0118] 例如,取380~780nm可见光范围内光谱,以5nm为间隔采样光谱反射比,此时,物体 表面的光谱反射比由N=81维向量组成,公式(2)可以改写成矩阵形式,即 [0119] g=QR。 (3) [0120] 其中,g代表J通道的数字响应输出,转换助阵Q通过F (λ)、E (λ)和φ (λ)计算获 k s m 取,即Q=∫F (λ)E (λ)φ (λ)dλR(λ),R代表物体的光谱反射比,根据公式(3)得到的光谱反 k s m 射比表示为: [0121] + R=Q g, (4) [0122] 可选的,可以采用间接的方法来对物体的光谱反射比进行估计,采用光谱反射比 已知的标准色卡训练样本,通过多光谱成型模块,得到相应的数字响应。 [0123] + + + 另外,根据公式(4),利用最小二乘法原则可以估计出转换矩阵Q ,即Q =Rg = T T -1 (Rg)(gg) ,进而获取多光谱目标信息(即光谱信息)。 [0124] S1014、将所述待修复古文物的光谱信息与所述古文物样本光谱数据库进行匹配, 得到所述待修复区域的光谱信息。 [0125] 具体的,计算机设备可以在古文物样本光谱数据库中,查找与待修复古文物相同 的古文物样本,再将待修复古文物的光谱信息与找到的古文物样本的光谱数据进行匹配, 以得到待修复区域的光谱信息。 [0126] 本实施例提供的古文物修复处理方法,该方法将待修复古文物与已构建的古文物 样本数据库进行匹配,得到待修复古文物中的待修复区域,将待修复古文物与古文物样本 指纹谱特征库进行匹配,得到待修复区域的物质信息,将待修复古文物与古文物样本光谱 数据库进行匹配,得到待修复区域的光谱信息,进而可以根据得到的待修复区域的物质信 息以及光谱信息进行反复分析得到数字图像信息,再对数字图像信息进行后续处理得到待 修复的目标物质信息,从而减少了操作员进行人为干预的过程,避免操作员对待修复的物 质信息进行主观判断,以克服在主观判断时的一些失误,对修复结果带来不可逆的影响。 [0127] 在其中一个实施例中,上述S105中在根据所述待修复真实物质信息和所述太赫兹 指纹谱数据,得到待修复的目标物质信息的步骤之前,所述方法还包括:根据所述古文物样 本数据库训练分类器模型。 [0128] 可选的,所述根据所述古文物样本数据库训练分类器模型的步骤,包括:利用已构 建的所述古文物样本数据库采用深度学习算法训练分类器模型。上述S105中根据所述待修 复真实物质信息和所述太赫兹指纹谱数据,得到待修复的目标物质信息的步骤,包括:通过 所述分类器模型对所述太赫兹指纹谱数据进行分类处理,得到分类物质信息;将所述分类 物质信息与所述待修复真实物质信息进行匹配,得到待修复的所述目标物质信息。 [0129] 具体的,计算机设备可以在训练分类器模型之前,先对已构建的古文物样本数据 库进行预处理,去除数据库中的无关信息以及噪声信息,得到有效的数据库,以减少计算工 作量。其中,预处理操作可以包括去噪、平滑、数据归一化处理等。另外,训练分类器模型过 程中可以对0.3~10太赫兹波段的频域谱和吸收谱数据进行研究处理。 [0130] 需要说明的是,计算机设备可以采用深度神经网络优化训练参数,该深度神经网 11 11 CN 111861970 A 说明书 9/12页 络可以为AlexNet网络模型。同时,计算机设备可以采用深度学习算法对优化后的训练参数 进行训练生成模型,并判断训练生成的模型是否满足收敛条件,若不满足收敛条件,则继续 开始执行优化训练参数的步骤,若满足收敛条件,测试该训练模型,判断该模型是否满足判 断标准,若满足判断标准,则认为该训练模型为最优的分类器模型,若不满足判断标准,则 继续开始执行优化训练参数的步骤。 [0131] 还需要说明的是,在训练模型之前,用户可以设置预设的收敛条件,该收敛条件可 以为用于该训练模型进行分类处理的预达到的准确率,在本实施例中,该准确率可以为 95%以上。另外,上述判断标准可以为当前得到的训练模型是否为在训练该模型之前,用户 预设的目标模型。 [0132] 上述优化训练参数的过程可以通过以下步骤实现: [0133] a、对古文物样本数据库中的数据x 进行标准化处理,即标准化处理的定义式为: ij [0134] [0135] 其中, 表示x 的样本均值,s表示x 的样本标准差,标准化处理后的矩阵表示为 ij j ij X; [0136] b、计算标准化处理后的矩阵X的协方差V,其中,协方差V是X的相关系数矩阵; [0137] c、计算协方差V的前m个特征值(即λ,λ,...,λ ,λ,并且λ≥λ≥...≥λ ≥ 1 2 m-1 m 1 2 m-1 λ),以及前m个特征值对应的特征向量a ,a ,...,a ,a ; m 1 2 m-1 m [0138] d、计算第h主成分 其中, 是a 第j个分量,并且主成分F h h 为原变量x ,x ,...,x的线] 可选的,主成分F可以为优化的训练参数。 h [0140] 在本实施例中,基于深度学习算法,通过训练得到的最优分类器模型,对获取的待 修复古文物的太赫兹指纹谱数据进行分类识别处理,得到分类后的多组物质信息。计算机 设备可以将分类得到的多组物质信息与上述获得的待修复物质信息进行匹配,进而确定待 修复区域的具体物质信息,即待修复的目标物质信息。 [0141] 进一步,操作员可以根据获取的待修复的目标物质信息对待修复实物区域进行修 复。 [0142] 本实施例提供的古文物修复处理方法,该方法根据古文物样本数据库训练最优的 分类器模型,通过该分类器模型可以对待修复区域的物质进行正确鉴别,进而能够提高古 文物修复的准确率。 [0143] 应该理解的是,虽然图1-3的流程图中的各个步骤按照箭头的指示依次显示,但是 这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤 的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1-3中的至少一 部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻 执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次 进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地 执行。 [0144] 关于古文物修复处理装置的具体限定可以参见上文中对于古文物修复处理方法 12 12 CN 111861970 A 说明书 10/12页 的限定,在此不再赘述。上述计算机设备的古文物修复处理装置中的各个模块可全部或部 分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备 中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执 行以上各个模块对应的操作。 [0145] 图4为一实施例提供的古文物修复处理装置结构示意图。如图4所示,该装置可以 包括:匹配模块11、获取数字图像信息模块12、转换模块13、获取指纹谱数据模块14以及获 取目标物质信息模块15。 [0146] 具体的,所述匹配模块11,用于将待修复古文物与已构建的古文物样本数据库进 行匹配,得到所述待修复古文物中的待修复区域,以及所述待修复区域的物质信息和所述 待修复区域的光谱信息; [0147] 所述获取数字图像信息模块12,用于通过所述待修复区域的物质信息以及所述待 修复区域的光谱信息,得到所述待修复区域的数字图像信息; [0148] 所述转换模块13,用于将所述待修复区域的数字图像信息转换为所述待修复区域 的待修复线] 所述获取指纹谱数据模块14,用于获取所述待修复古文物的太赫兹指纹谱数据; [0150] 所述获取目标物质信息模块15,用于根据所述待修复真实物质信息和所述太赫兹 指纹谱数据,得到待修复的目标物质信息。 [0151] 本实施例提供的古文物修复处理装置,可以执行上述方法实施例,其实现原理和 技术效果类似,在此不再赘述。 [0152] 在其中一个实施例中,所述所述古文物样本数据库包括所述古文物样本的指纹谱 特征库以及所述古文物样本的光谱数据库;所述匹配模块11包括:第一匹配单元121、第二 匹配单元122、第一获取单元123以及第三匹配单元124。 [0153] 具体的,所述第一匹配单元121,用于将所述待修复古文物与已构建的所述古文物 样本数据库进行匹配,得到待修复古文物中的所述待修复区域; [0154] 上述第二匹配单元122,用于将所述待修复古文物与所述古文物样本指纹谱特征 库进行匹配,得到所述待修复区域的物质信息; [0155] 所述第一获取单元123,用于获取所述待修复古文物的光谱信息; [0156] 所述第三匹配单元124,用于将所述待修复古文物的光谱信息与所述古文物样本 光谱数据库进行匹配,得到所述待修复区域的光谱信息。 [0157] 本实施例提供的古文物修复处理装置,可以执行上述方法实施例,其实现原理和 技术效果类似,在此不再赘述。 [0158] 在其中一个实施例中,所述获取数字图像信息模块12具体用于通过数据图像修复 系统,对所述待修复区域的物质信息以及所述待修复区域的光谱信息进行融合处理,得到 所述待修复区域的数字图像信息。 [0159] 本实施例提供的古文物修复处理装置,可以执行上述方法实施例,其实现原理和 技术效果类似,在此不再赘述。 [0160] 在其中一个实施例中,所述获取指纹谱数据模块14包括:计算单元141和第二获取 单元142。 [0161] 具体的,所述计算单元141,用于获取所述待修复古文物的光学系数; 13 13 CN 111861970 A 说明书 11/12页 [0162] 所述第二获取单元142,用于根据所述光学系数获取所述待修复古文物的太赫兹 指纹谱数据。 [0163] 可选的,所述光学系数包括折射率、消光系数以及吸收系数中的至少一种。 [0164] 本实施例提供的古文物修复处理装置,可以执行上述方法实施例,其实现原理和 技术效果类似,在此不再赘述。 [0165] 在其中一个实施例中,所述古文物修复处理装置还包括:训练模块16; [0166] 所述训练模块16,用于根据所述古文物样本数据库训练分类器模型。 [0167] 本实施例提供的古文物修复处理装置,可以执行上述方法实施例,其实现原理和 技术效果类似,在此不再赘述。 [0168] 在其中一个实施例中,所述获取目标物质信息模块15包括:分类单元151以及第四 匹配单元152。 [0169] 具体的,所述分类单元151,用于通过所述分类器模型对所述太赫兹指纹谱数据进 行分类处理,得到分类物质信息; [0170] 所述第四匹配单元152,用于将所述分类物质信息与所述待修复真实物质信息进 行匹配,得到待修复的所述目标物质信息。 [0171] 本实施例提供的古文物修复处理装置,可以执行上述方法实施例,其实现原理和 技术效果类似,在此不再赘述。 [0172] 在其中一个实施例中,所述训练模块16具体用于利用已构建的所述古文物样本数 据库采用深度学习算法训练分类器模型。 [0173] 本实施例提供的古文物修复处理装置,可以执行上述方法实施例,其实现原理和 技术效果类似,在此不再赘述。 [0174] 在一个实施例中,提供了一种计算机设备,其内部结构图可以如图5所示。该计算 机设备包括通过系统总线连接的处理器、存储器、网络接口、显示屏和输入装置。其中,该计 算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介 质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性 存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的网络接口用于与外 部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种古文物修复处理方 法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入 装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触 控板,还可以是外接的键盘、触控板或鼠标等。 [0175] 本领域技术人员可以理解,图5中示出的结构,仅仅是与本申请方案相关的部分结 构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备 可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。 [0176] 在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有 计算机程序,该处理器执行计算机程序时实现以下步骤: [0177] 将待修复古文物与已构建的古文物样本数据库进行匹配,得到所述待修复古文物 中的待修复区域,以及所述待修复区域的物质信息和所述待修复区域的光谱信息; [0178] 通过所述待修复区域的物质信息以及所述待修复区域的光谱信息,得到所述待修 复区域的数字图像信息; 14 14 CN 111861970 A 说明书 12/12页 [0179] 将所述待修复区域的数字图像信息转换为所述待修复区域的待修复线] 获取所述待修复古文物的太赫兹指纹谱数据; [0181] 根据所述待修复真实物质信息和所述太赫兹指纹谱数据,得到待修复的目标物质 信息。 [0182] 在一个实施例中,提供了一种存储介质,其上存储有计算机程序,计算机程序被处 理器执行时实现以下步骤: [0183] 将待修复古文物与已构建的古文物样本数据库进行匹配,得到所述待修复古文物 中的待修复区域,以及所述待修复区域的物质信息和所述待修复区域的光谱信息; [0184] 通过所述待修复区域的物质信息以及所述待修复区域的光谱信息,得到所述待修 复区域的数字图像信息; [0185] 将所述待修复区域的数字图像信息转换为所述待修复区域的待修复线] 获取所述待修复古文物的太赫兹指纹谱数据; [0187] 根据所述待修复真实物质信息和所述太赫兹指纹谱数据,得到待修复的目标物质 信息。 [0188] 本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以 通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机 可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中, 本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可 包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM (PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括 随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得, 诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强 型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM (RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。 [0189] 以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并 不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员 来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保 护范围。因此,本申请专利的保护范围应以所附权利要求为准。 15 15 CN 111861970 A 说明书附图 1/4页 图1 16 16 CN 111861970 A 说明书附图 2/4页 图2 17 17 CN 111861970 A 说明书附图 3/4页 图3 18 18 CN 111861970 A 说明书附图 4/4页 图4 图5 19 19
2、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问加。
3、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
4、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
武汉市2025届高中毕业生四月调研考试(四调)数学试卷(含答案详解).pdf
原创力文档创建于2008年,本站为文档C2C交易模式,即用户上传的文档直接分享给其他用户(可下载、阅读),本站只是中间服务平台,本站所有文档下载所得的收益归上传人所有。原创力文档是网络服务平台方,若您的权利被侵害,请发链接和相关诉求至 电线) ,上传者
地址:太原市小店区太榆路99号印象城2号写字间607号 Copyright © 2025 PG·电子 版权所有
ICP备案编号:晋ICP备2022005708号